8-5

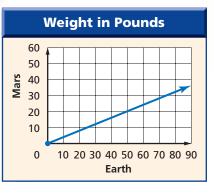
Main Ideas

functions.

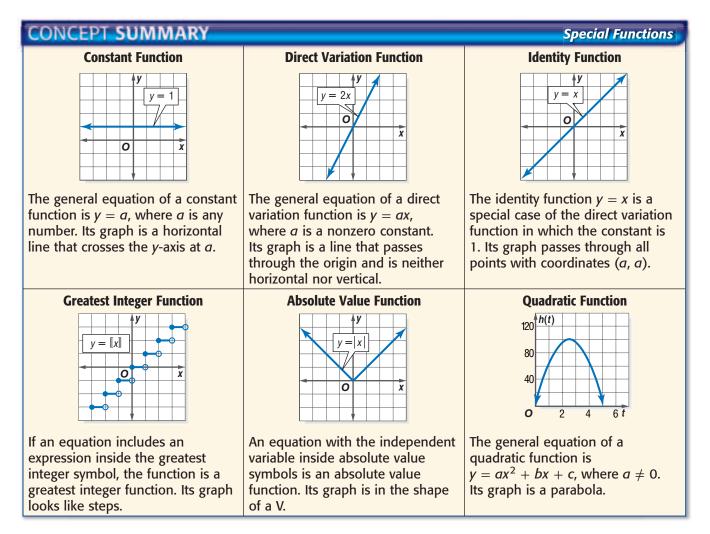
functions.

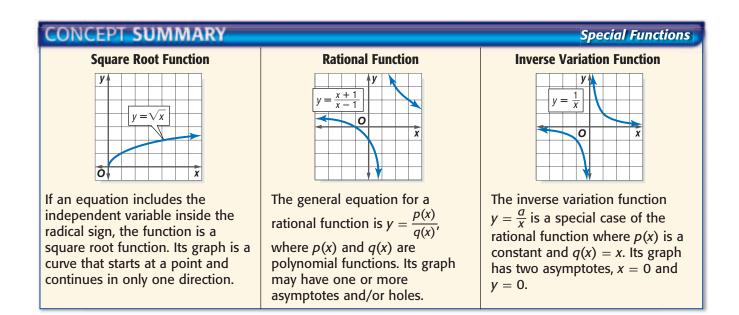
Identify graphs as

different types of

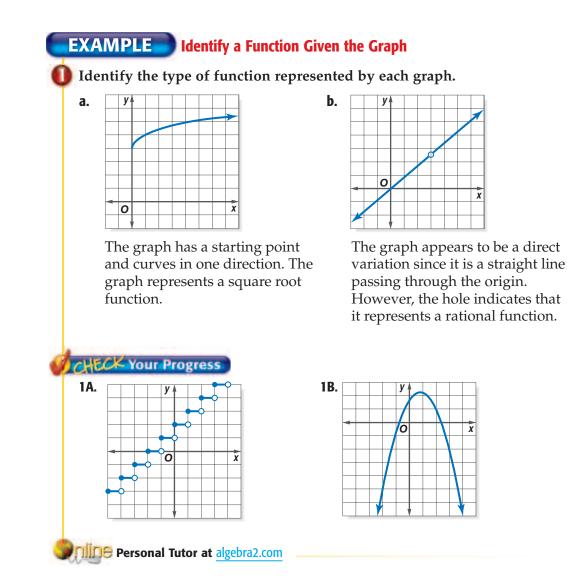

Identify equations as

different types of

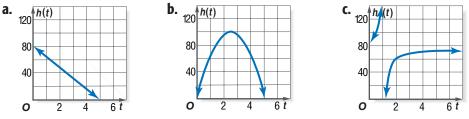

Classes of Functions


GET READY for the Lesson

The purpose of the Mars Exploration Program is to study conditions on Mars. The findings will help NASA prepare for a possible mission with human explorers. The graph at the right compares a person's weight on Earth with his or her weight on Mars. This graph represents a direct variation, which you studied in the previous lesson.



Identify Graphs In this book, you have studied several types of graphs representing special functions. The following is a summary of these graphs.


You can use the shape of the graphs of each type of function to identify the type of function that is represented by a given graph. To do so, keep in mind the graph of the parent function of each function type.

Identify Equations If you can identify an equation as a type of function, you can determine the shape of the graph.

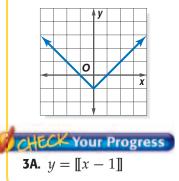
EXAMPLE Match Equation with Graph

ROCKETRY Emily launched a toy rocket from ground level. The height above the ground level *h*, in feet, after *t* seconds is given by the formula $h(t) = -16t^2 + 80t$. Which graph depicts the height of the rocket during its flight?

The function includes a second-degree polynomial. Therefore, it is a quadratic function, and its graph is a parabola. Graph **b** is on the only parabola. Therefore, the answer is graph **b**.

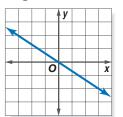
CHECK Your Progress

2. Which graph above could represent an elevator moving from a height of 80 feet to ground level in 5 seconds?


Sometimes recognizing an equation as a specific type of function can help you graph the function.

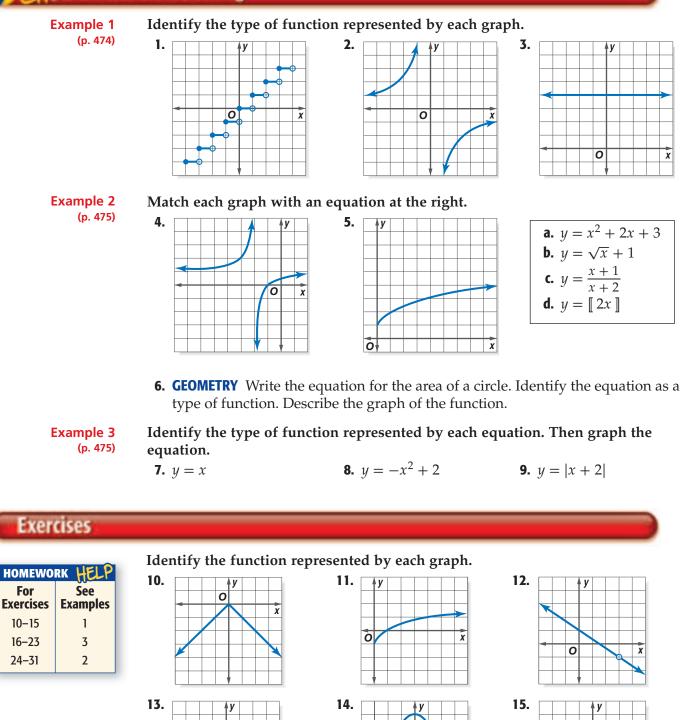
EXAMPLE Identify a Function Given its Equation

Identify the type of function represented by each equation. Then graph the equation.


a. y = |x| - 1

Since the equation includes an expression inside absolute value symbols, it is an absolute value function. Therefore, the graph will be in the shape of a V. Plot some points and graph the absolute value function.

b.
$$y = -\frac{2}{3}x$$


The function is in the form y = ax, where $a = -\frac{2}{3}$. Therefore, it is a direct variation function. The graph passes through the origin and has a slope of $-\frac{2}{3}$.

3B.
$$y = \frac{-1}{x+1}$$

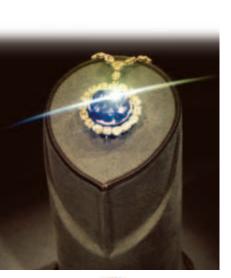
Your Understanding

16. y = -1.5**17.** y = 2.5x**18.** $y = \sqrt{9x}$ **19.** $y = \frac{4}{x}$ **20.** $y = \frac{x^2 - 1}{x - 1}$ **21.** y = 3[x]**22.** y = |2x|**23.** $y = 2x^2$

Identify the type of function represented by each equation. Then graph

0

x

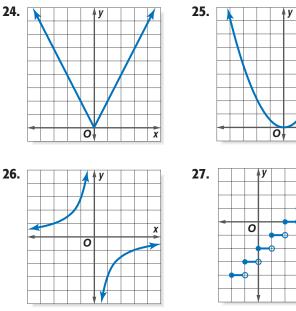

0

x

0

the equation.

Match each graph with an equation at the right.


Real-World Link...

When the Hope Diamond was shipped from New York to the Smithsonian Institution in Washington, D.C., it was mailed in a plain brown paper package.

Source: usps.com

EXTRA PRACTICE	
See pages 909, 933.	
Math Maine	
Self-Check Quiz at	
algebra2.com	

H.O.T. Problems.....

a.
$$y = [x] - 2$$

b. $y = 2|x|$
c. $y = 2\sqrt{x}$
d. $y = -3x$
e. $y = 0.5x^2$
f. $y = -\frac{3}{x+1}$
g. $y = -\frac{3}{x}$

HEALTH For Exercises 28–30, use the following information.

A woman painting a room will burn an average of 4.5 Calories per minute. **28.** Write an equation for the number of Calories burned in *m* minutes.

x

- **29.** Identify the equation in Exercise 28 as a type of function.
- **30.** Describe the graph of the function.
- **31. ARCHITECTURE** The shape of the Gateway Arch of the Jefferson National Expansion Memorial in St. Louis, Missouri, resembles the graph of the function $f(x) = -0.00635x^2 + 4.0005x 0.07875$, where *x* is in feet. Describe the shape of the Gateway Arch.

MAIL For Exercises 32 and 33, use the following information.

In 2006, the cost to mail a first-class letter was 39¢ for any weight up to and including 1 ounce. Each additional ounce or part of an ounce added 24¢ to the cost.

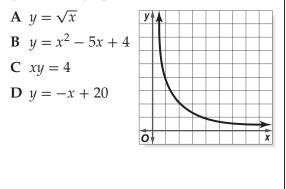
- **32.** Make a graph showing the postal rates to mail any letter from 0 to 8 ounces.
- **33.** Compare your graph in Exercise 32 to the graph of the greatest integer function.

34. OPEN ENDED Find a counterexample to the statement *All functions are continuous*. Describe your function.

35. CHALLENGE Identify each table of values as a type of function.

	1				
a.	X	<i>f</i> (<i>x</i>)	b.		
	—5	7			
	-3	5			
	-1	3			
	0	2			
	1	3			
	3	5			
	5	7			
	7	9			

X	<i>f</i> (<i>x</i>)	С.
-5	24	
-3	8	
-1	0	
0	-1	
1	0	
3	8	
5	24	
7	48	


X	<i>f</i> (<i>x</i>)	d.
-1.3	-1	
-1.7	-1	
0	1	
0.8	1	
0.9	1	
1	2	
1.5	2	
2.3	3	

a.	X	<i>f</i> (<i>x</i>)	
	-5	undefined	
	-3	undefined	
	-1	undefined	
	0	0	
	1	1	
	4	2	
	9	3	
	16	4	

- **36. CHALLENGE** Without graphing either function, explain how the graph of y = [x + 2] 3 is related to the graph of y = [x + 1] 1.
- **37.** *Writing in Math* Use the information on page 473 to explain how the graph of a function can be used to determine the type of relationship that exists between the quantities represented by the domain and the range.

STANDARDIZED TEST PRACTICE

38. ACT/SAT The curve below could be part of the graph of which function?

39. REVIEW A paper plate with a 12-inch diameter is divided into 3 sections.

What is the approximate length of the arc of the largest section?

F 20.3 inches **H** 24.2 inches

G 22.5 inches J 26.5 inches

Spiral Review

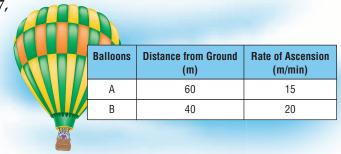
40. If *x* varies directly as *y* and $y = \frac{1}{5}$ when x = 11, find *x* when $y = \frac{2}{5}$. (Lesson 8-4)

Graph each rational function. (Lesson 8-3)

41.
$$f(x) = \frac{3}{x+2}$$

42. $f(x) = \frac{8}{(x-1)(x+3)}$
43. $f(x) = \frac{x^2 - 5x + 4}{x-4}$

Solve each equation by factoring. (Lesson 5-2)


44.
$$x^2 + 6x + 8 = 0$$

HOT-AIR BALLOONS For Exercises 46 and 47, use the table. (Lesson 3-2)

- **46.** If both balloons are launched at the same time, how long will it take for them to be the same distance from the ground?
- **47.** What is the distance of the balloons from the ground at that time?

GET READY for the Next Lesson

45. $2q^2 + 11q = 21$

PREREQUISITE SKILL Find the LCM of each set of polynomials. (Lesson 8-2)

48. $15ab^2c$, $6a^3$, $4bc^2$ **49.** $9x^3$, $5xy^2$, $15x^2y^3$ **50.** 5d - 10, 3d - 6**51.** $x^2 - y^2$, 3x + 3y**52.** $a^2 - 2a - 3$, $a^2 - a - 6$ **53.** $2t^2 - 9t - 5$, $t^2 + t - 30$